ACID-CATALYZED O-ALLYLATION OF β-HYDROXY-α-AMINO ACIDS: AN ENTRY INTO CONFORMATIONALLY CONSTRAINED DIPEPTIDE SURROGATES

Timothy P. Burkholder*, Tieu-Binh Le, Eugene L. Giroux and Gary A. Flynn

Marion Merrell Dow Research Institute, 2110 E. Galbraith Road, Cincinnati, Ohio 45215

(Received 23 March 1992)

Abstract: 0-Allylation using allyl trichloroimidate 5 was found to be an effective method for the introduction of an acetaldehyde equivalent onto the hydroxyl group of β -hydroxy- α -amino acid derivatives. Rigid oxygen containing tricyclic anti-phenylalanyl-leucine mimic 1 was efficiently synthesized using this method. This mimetic was further elaborated to provide 7c, a potent inhibitor of angiotensin-1 converting enzyme (ACE).

Conformationally restricted molecules which mimic energetically favored and hence highly populated orientations of amino acid side chains have proven useful as active-site probes for metalloproteinases. The rigid oxygen containing tricyclic anti-phenylalanyl-leucine mimic 1 was thought to provide an attractive complement to the carbocyclic and thiomorpholine analogs previously reported. This communication describes a versatile method for appending an acetaldehyde equivalent onto β -hydroxy- α -amino acid derivatives using allyl trichloroimidate 5. Allyl ether 4a was efficiently converted to constrained peptide mimetic 1.

We report that allyl trichloroacetimidate 5^2 is a convenient reagent for the 0-allylation of β -hydroxy- α -amino acid derivatives under mildly acidic conditions. This method is compatible with imide or amide amino-protecting groups and methyl or benzyl ester carboxyl-protecting groups. The protected β -hydroxy- α -amino acids⁴ were dissolved in dichloromethane/cyclohexane (1:1, 0.1M) and allyl trichloroacetimidate (2.0 eq) and trifluoromethanesulfonic acid (0.9 eq) were added. The reactions were allowed to stir at 20°C until the alcohols (3) were completely converted to the corresponding allyl ethers (4); 4 h for serine derivative (3a \rightarrow 4a), 6-12 h for threonine derivatives (3b \rightarrow 4b and 3c \rightarrow 4c) and 18-24 h for β -phenylserine derivatives (3d \rightarrow 4d and 3e \rightarrow 4e) (see Table 1). Aqueous workup and flash chromatographic purification afforded the allyl ethers in 60-74% yield.

Table 1. Allylation of β -hydroxy- α -amino acid derivatives with allyl trichloroacetimidate 5

	Allyl				Configuration		Time	
Alcohol	Ether	R ₁ ,R ₂	R ₃	Rß	α	β	(hr)	% Yield
3a	4a	PhthN	CH ₃	Н	s	-	4	60
3b	4b	Phth	CH ₂ C ₆ H ₅	CH ₃	s	R	6	69
3c	4c	Phth	CH2C6H5	CH ₃	S	S	12	70
3d	4d	Phth	CH ₃	C ₆ H ₅	s	S	18	70
3е	4e	Phth	CH ₃	C ₆ H ₅	R	R	22	74

The 0-allyl ether of N-phthaloyl-L-phenylalanyl-L-serine 4a was efficiently converted to conformationally constrained anti-Phe-Leu mimetic 1 using the following sequence. Ozonolysis of the 0-allyl ether 4a $(O_3, CH_2Cl_2, CH_3OH, -78^{\circ}C; (CH_3)S 78^{\circ}C \rightarrow 20^{\circ}C)$ followed by acid catalyzed cyclization $(CH_2Cl_2/CF_3CO_2H (10:1), 20^{\circ}C, 2.5 \text{ h})$ and purification afforded morpholinoenamine 2 $(68\%, \text{mp} = 70-72^{\circ}C, [\alpha]_D^{20} = -368^{\circ} (c=1, CHCl_3))$. Intramolecular acyliminium ion cyclization of 2 under rigorously anhydrous conditions $(CF_3SO_3H (7.7 \text{ eq}), (CF_3CO)_2O (1.2 \text{ eq}), CH_2Cl_2, 20^{\circ}C, 123 \text{ h})$ gave carboxylic acid 5a (73%) which was esterified $(Ph_2CN_2, CH_2Cl_2, 20^{\circ}C, 6 \text{ h})$ and purified by plug filtration on silica gel to afford 5b in 76% yield $(\text{mp} = 178-181^{\circ}C, [\alpha]_D^{20} = -116^{\circ} (c=1, CHCl_3))$.

The anti-Phe-Leu mimetic 1 was elaborated to diacid 7c for evaluation as an inhibitor of angiotensin-1 converting enzyme (ACE). The phthalimide protecting group was removed (H_2NNH_2 , CH_3OH), Δ) and the free amine was treated with (R)-triflate⁵ 6 (CH_2Cl_2 , 1,8-bis-dimethylaminonaphthalene, 20°C, CH_2Cl_2) to give coupled diester 7a in 94% yield. Cleavage of the benzhydryl ester (H_2 , 5% Pd/C, CH_3CH_2OH , TFA, 99%) provided ethyl ester 7b which was hydrolyzed with lithium hydroxide in methanol and purified by ion exchange chromatography to give diacid 7c in 73% yield.

Diacid 7c was evaluated biochemically using rabbit lung ACE by methodology described previously.⁶ Morpholino derivative 7c was a potent inhibitor of ACE ($IC_{50} = 0.09 \, \text{nM}$) similar to that determined for carbocyclic analog (7d) and thiomorpholine analog (7e).

Acknowledgment: We would like to thank Dr. F. Mark Laskovics for synthesizing additional quantities of L and D- β -phenylserine.

References and Notes

- a) Flynn, G.A.; Giroux, E.L.; Dage, R.C. J. Am. Chem. Soc., 1987, 109, 7914.
 b) Flynn, G.A.; Giroux, E.L.; Beight, D.W. in Peptide Chemistry; Shiba, T.; Sakakibara, S., Eds.; Protein Research Foundation, Osaka, 1987, 631.
- 2. Wessel, H.P.; Iversen, T.; Bundle, D.R. J. Chem. Soc., Perkin Trans. 1, 1985, 2247.
- 3. See Sham, H.L.; Bolis, G.; Stein, H.H.; Fesik, S.W.; Marcotte, P.A.; Plattner, J.J.; Rempel, C.A.; Greer, J. J. Med. Chem., 1988, 31, 284, for the allylation of sodium carboxylate of N-Boc-Serine. Attempted allylation of β-hydroxy-phenylalanine methyl ester derivatives under base catalyzed conditions (NaH, allyl bromide, THF or LDA, allyl bromide, THF) led to undesired products resulting from retro-aldol condensation and β-elimination of the O-allyl ether.
- 4. The acid chloride of N-phthalimido-L-phenylalanine was acylated with L-serine methyl ester hydrochloride in CH₂Cl₂ in the presence of 4-methylmorpholine to afford 3a in 67% yield. L-Threonine and L-allo-threonine were allowed to react with phthalic anhydride in refluxing dioxane followed by esterification (benzylbromide and diiso-propylethylamine in CH₂Cl₂) to afford 3b and 3c, respectively (59% and 85%). L and D-β-Phenylserine were prepared using the method of Evans (Evans, D.A.; Sjogren, E.B.; Weber, A.E.; Conn, R.E. Tetrahedron Lett., 1987, 28, 39). Treatment with N-carboethoxyphthalimide followed by esterification (CH₂N₂) afforded 3d and 3e (68% and 62%), respectively.
- 5. Urbach, H.; Henning, R. Tetrahedron Lett., 1984, 25, 1143.
- Giroux, E.L.; Beight, D.W.; Dage, R.C.; Flynn, G.A. J. Enzyme Inhibition, 1989, 2, 269.